Tetracyanoethylene-induced Chlorinative Cleavage of Permethylated Oligogermanes with Polyhalomethanes Kunio Mochida,* Rieko Hata, Chikako Hodota, Shunichi Fukuzumi, † Masahiro Kako, †† and Yasuhiro Nakadaira†† Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Tokyo 171 †Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565 ††Department of Chemistry, The University of Electro-Communications, Chofu, Tokyo 182 (Received December 22, 1994) In the presence of tetracyanoethylene (TCNE), Ge-Ge bonds of oligogermanes ($Me(Me_2Ge)_nMe$, n=2-5) were cleaved with CCl4 to yield the corresponding chlorogermanes. A mechanism involving an oligogermane radical cation is proposed for the Ge-Ge cleavage. Recently, we have described the first insertion reaction of TCNE into oligogermanes ($Me(Me_2Ge)_nMe$) via electron transfer (ET).¹ In this reaction, TCNE insertion into oligogermanes depends on the nature of oligogermane cation radicals generated by charge-transfer (CT). $$Me(Me_2Ge)_nMe + TCNE \xrightarrow{r. t.} [CT complex]$$ $$\xrightarrow{50 \text{ }^{\circ}C} Me(Me_2Ge)_m(CN)_2CC(CN)_2(Me_2Ge)_{n-m}Me$$ In the course of our studies on an electron transfer reaction of oligogermanes, we found new chlorinative cleavage of the Ge-Ge bonds of oligogermane via cation radicals. Si-Si bonds of oligosilanes undergo chlorinative cleavage on irradiation in CCl4-CH₂Cl₂ containing dicyanoanthracene.² A mixture of octamethyltrigermane (Me(Me₂Ge)₃Me) and TCNE in CCl₄-CH₂Cl₂ solvents at 70 °C for 4 h gave trimethylchlorogermane (Me₃GeCl, 28%), pentamethylchlorodigermane (Me₅Ge₂Cl, 32%), and hexachloroethane (trace), together with 1:1 adduct (15%).¹ The reaction did not occur without one equivalent of TCNE under the conditions. The 1:1 adduct formed was stable in CCl₄. On mixed with other acceptors such as chloranil and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in CCl₄-CH₂Cl₂, Me(Me₂Ge)₃Me also afforded Me₃GeCl (4.4% and 6.0%) and Me₅Ge₂Cl (6.3% and 10%), respectively in rather poor yields. In the case of DDQ, most of Me(Me₂Ge)₃Me was converted to the 1:1 adduct (ca. 80%), but chloranil afforded only a trace amount of the 1:1 adduct with the trigermane. Even in a mixed solvent of CHCl₃-CH₂Cl₂, the corresponding chlorogermane and chlorodigermane were formed but in lower yields. In the presence of TCNE, the terminal Ge-Ge bonds and the internal Ge-Ge bonds of Me(Me₂Ge)₄Me and Me(Me₂Ge)₅Me were cleaved with CCl₄ to yield the corresponding chlorogermanes. The results are summarized in Table 1. MINDO UHF calculation of Me(Me₂Ge)₃Me cation radical shows that the unpaired electron is nearly localized on the p orbital of a Ge atom of Me₅Ge₂ moiety, while the charge is localized in the Me₃Ge moiety in the most stable configuration. From these results, we propose the following scheme as one of possible reaction pathways. At first, Me(Me₂Ge)₃Me is converted to the radical ion pair via a CT complex. Some parts of the radical ion may be transformed to the 1:1 adduct. On the other hand, Me(Me₂Ge)₃Me cation radical formed via CT undergoes spontaneous scission to Me₅Ge₂ and Me₃Ge⁺. The Me₅Ge₂ abstracts a chlorine atom from CCl4 to give the chlorodigermane and ·CCl₃, while Me₃Ge⁺ is reduced by TCNE · to afford Me₃Ge together with TCNE. The Me₃Ge thus formed abstracts a chlorine atom from CCl₄ to give Me₃GeCl and ·CCl₃. Finally, ·CCl₃ either adds to TCNE or dimerizes. **Table 1.** TCNE-induced Chlorinative Ge-Ge Bond Cleavage of Oligogermanes with CCl₄-CH₂Cl₂ $^{\rm a}$ | Me(Me ₂ Ge) _n Me | Accepto | or Co | onv/% Products(Yield,% | <u>b</u>) | |--|---------|-------|---|------------| | Me3GeGeMe3 | TCNE | 10 | Me3GeCl (6.0) | | | Me(Me2Ge)3Me | TCNE | 59 | Me ₃ GeCl (29), Me ₅ Ge ₂ C | l (32) | | Me(Me2Ge)4Me | TCNE | 100 | Me ₃ GeCl (22), Me ₅ Ge ₂ Cl | l (49) | | | | | Me7Ge3Cl (18) | | | Me(Me ₂ Ge) ₅ Me | TCNE | 100 | Me ₃ GeCl (15), Me ₅ Ge ₂ Cl | l (40) | | | | | Me7Ge3Cl (35), Me9Ge4C | 7 c | | a) Me(MeaGe), Me (0.05 mmol) / TCNE (0.2 mmol) / CCl. (3.0 | | | | | a) Me(Me₂Ge)_nMe (0.05 mmol) / TCNE (0.2 mmol) / CCl₄ (3.0 mmol) / CH₂Cl₂ (5 cm³) at 70 °C for 4 h. b) Determined by GLC. c) Detected by GC-MS. ## References and Notes - 1 K. Mochida, C. Hodota, R. Hata, and S. Fukuzumi, Organometallics, 12, 586 (1993). - Y. Nakadaira, N. Komatsu, and H. Sakurai, *Chem. Lett.*, 1985, 1781.